Polyphenol Bioactivity: Antioxidants?

Prof Kevin D Croft
University of Western Australia

Other dietary polyphenols with biological activity

- **Phenolic acids**, eg caffeic acid (fruits, coffee etc)
- **Lignans**, eg. Sesamin (sesame seed), isolariciresinol etc (flax seed, bran)
- **Stilbenes**, eg. resveratrol (grapes)
- **Phenylpropanoids**, eg Curcumin (turmeric), zingerone (ginger)
- **Terpenoids**, eg. Oleuropein (olive oil)

Dietary polyphenols and cardiovascular disease: *more than antioxidants*

- low concentrations in vasculature
- metabolic transformation
- specific targets, key enzymes
Flavonoid Metabolism

Human neutrophils stimulated with Ca ionophore

Antioxidant activity

Atherosclerosis (animal models)

Apo E deficient mouse

Faulty uptake of lipoproteins in the liver

Very high circulating cholesterol
Effect of pure polyphenols incorporated into the diet, apoE-/- , ~1 mg/day, 20 weeks

Table 1. Effects of specific polyphenols on tested pathways at week 26 (expressed as % change compared to the ApoE-/- mice fed on control diet).

<table>
<thead>
<tr>
<th>Polyphenol</th>
<th>Aortic sinus lesion formation</th>
<th>Thoracic aorta lesion formation</th>
<th>Plasma cholesterol</th>
<th>Aortic F2-isoprostanes</th>
<th>HO-1 protein</th>
<th>Aortic LTB4</th>
<th>Plasma soluble P-selectin</th>
<th>Urinary nitrate</th>
<th>Vascular eNOS activity</th>
<th>Urinary ET-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercetin</td>
<td>-79*</td>
<td>-57*</td>
<td>+0.1</td>
<td>-60*</td>
<td>+190*</td>
<td>-63*</td>
<td>-29*</td>
<td>+90*</td>
<td>+1446*</td>
<td>-52*</td>
</tr>
<tr>
<td>Epicatechin</td>
<td>-14</td>
<td>-15</td>
<td>-2</td>
<td>-77*</td>
<td>+4</td>
<td>-34*</td>
<td>-33*</td>
<td>+44</td>
<td>+631</td>
<td>-51*</td>
</tr>
<tr>
<td>Theaflavin</td>
<td>-56*</td>
<td>-24</td>
<td>-</td>
<td>-39</td>
<td>ND</td>
<td>-10</td>
<td>ND</td>
<td>+44</td>
<td>+923*</td>
<td>-1</td>
</tr>
<tr>
<td>Sesamin</td>
<td>-41</td>
<td>-24</td>
<td>-</td>
<td>-27</td>
<td>ND</td>
<td>-12</td>
<td>ND</td>
<td>+631</td>
<td>+305</td>
<td>-4</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>-24</td>
<td>-43</td>
<td>-</td>
<td>-9</td>
<td>ND</td>
<td>-24</td>
<td>ND</td>
<td>+4</td>
<td>+466</td>
<td>-40</td>
</tr>
</tbody>
</table>

*p < 0.05 vs ApoE-/- control mice. ND = not determined.

Evidence for effects of dietary flavonoids on major CVD risk factors in humans

Endothelial Function
Blood Pressure

Heme oxygenase-1 is the inducible form of the enzyme involved in heme degradation and the release of iron, carbon monoxide and the bile pigment biliverdin that is then converted to bilirubin. HO-1 exerts an anti-inflammatory and antioxidant action within the vasculature and can protect against oxidative damage.
Comparison of quercetin, epicatechin, epigallocatechin gallate on plasma NO

- Cross-over study, 12 healthy subjects
- 200mg of each flavonoid or water control
- Blood collected at baseline and after 2 hours, urine at baseline and 5 hours.
- Plasma nitrosothiols measured by gas phase chemiluminescence. Nitrate/nitrite measured by GCMS
- Plasma and urinary flavonoids measured by GCMS

Bioavailability of flavonoids - plasma

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Plasma Flavonoids (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>1</td>
</tr>
<tr>
<td>3'-MQ</td>
<td>2</td>
</tr>
<tr>
<td>Total Q</td>
<td>3</td>
</tr>
</tbody>
</table>

How do flavonoids effect NO ?

- Increase eNOS enzyme activity, produce more NO
- Prevent the breakdown of NO
- Recent in vitro evidence that methylated metabolites of epicatechin can inhibit NADPH oxidase (*Steffan, Sies, FRBM 2007*)
- Reduction of NO_3^- to NO_2^- and NO

PARTICIPANTS AND PROCEDURE

- 30 healthy men and women (18 to 65 years of age) recruited from the general population
- 4 visits in random order
- 1 week washout between testing days
- Same dinner night before each visit
- Same low flavonoid / low nitrate breakfast on morning of each visit

Bondonno et.al. Free Rad Biol Med. 2012
Study design

<table>
<thead>
<tr>
<th>Visit</th>
<th>Pre and during visit</th>
<th>During visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FLAVONOID CONTROL</td>
<td>NITRATE CONTROL</td>
</tr>
<tr>
<td>B</td>
<td>FLAVONOID ACTIVE</td>
<td>NITRATE CONTROL</td>
</tr>
<tr>
<td>C</td>
<td>FLAVONOID CONTROL</td>
<td>NITRATE ACTIVE</td>
</tr>
<tr>
<td>D</td>
<td>FLAVONOID ACTIVE</td>
<td>NITRATE ACTIVE</td>
</tr>
</tbody>
</table>

Breakfast and flavonoid treatment 4 hr
Lunch and flavonoid / nitrate treatment 2 hr
FMD Blood sample

% FMD BY TIME AFTER CUFF INFLATION

NOx BY TREATMENT:

(-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans
H Schroeter et.al PNAS 2006

Mechanisms of action

• Activation of key signalling pathways or enzymes
 – AMPK activation, enzymes involved in lipid and glucose metabolism, eNOS. Resveratrol, quercetin etc
• Estrogenic effects, isoflavones, some lignans
• Redox sensitive transcription factors
 – NF-kB → inflammation
 – Nrf2 → binds antioxidant response elements of genes encoding for antioxidant enzymes eg HO-1

• Cardiovascular health effects
 – vascular function, BP
 – Thrombosis
 – Lipids
 – Inflammation
 – Glucose metabolism

Bioactivity overview

• Polyphenols are a diverse range of compounds.
• Global measures such as Total Antioxidant Capacity (TAC) may be of little value.
• Bioactive polyphenols may be beneficial either as food components or isolated compounds. Food matrix effects on bioavailability may influence absorption and metabolism.
• Different polyphenols may have very different and specific activity, eg grapefruit flavonoids and drug metabolising enzymes.

Acknowledgements

Collaborators
UWA
Jonathan Hodgson
Natalie Ward
Trevor Mori
Anne Barden
Ian Puddey
Julie Proudfoot
Adeline Indrawan
PhD students:
Jason Wu
Wai Mun Loke
Cathy Bondonno
Helen Yu Shen
Aidilla Mubarak
University of Sydney
Roland Stocker
Inst of Food Research, UK
Paul Kroon

National Health & Medical Research Council,
National Heart Foundation of Australia
Australian Research Council