Impact of Food Structure on Fermentation by Gut Microbiota

Mike Gidley

ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland

ILSI SEA Region - Conference: Gut feelings - what can we learn from recent research on gut microbiota? Australia December 2013 (www.ilsi.org/SEA_Region)
Impact of Food Structure on Fermentation by Gut Microbiota

• What gets to the large intestine?

• What happens in the large intestine?

• Effects of food structure

• Nutrition and health implications
What gets to the large intestine?

The sum of all diet components and secreta that have not been absorbed in the stomach or small intestine
What gets to the large intestine?

- The sum of all diet components and secreta that have not been absorbed in the stomach or small intestine
- All non-starch polysaccharides and oligosaccharides
- Some protein (dietary and secreted)
- Some starch (= resistant starch)
- Lipid?
- Water / minerals
What gets to the large intestine?

- The sum of all diet components and secreta that have not been absorbed in the stomach or small intestine
- All non-starch polysaccharides and oligosaccharides
- Some protein (dietary and secreted)
- Some starch (= resistant starch)
- Lipid?
- Water / minerals

- Prediction of resistant macronutrients in humans relies on calibration against limited ileostomy results
What gets to the large intestine?

- The sum of all diet components and secreta that have not been absorbed in the stomach or small intestine
- All non-starch polysaccharides and oligosaccharides
- Some protein (dietary and secreted)
- Some starch (= resistant starch)
- Lipid?
- Water / minerals

- Prediction of resistant macronutrients in humans relies on calibration against limited ileostomy results
- Digesta contents can be studied in model animals e.g. pigs, but how predictive of human response?
Arabinoxylan added to pig diets reduces protein digestibility throughout tract

Zhang et al, submitted for publication
Arabinoxylan added to pig diets reduces protein digestibility throughout tract.

More protein enters large intestine in presence of soluble fibre.

(Diets 1 & 2 lower protein content than diets 3 & 4)
SI digestion and passage rates both important

Very limited current knowledge of digesta structure / properties

Gidley, Current Opinion in Colloid and Interface Science, 2013, 18, 371-378
Resistant starch entering the large intestine depends on:

- extent of salivary/pancreatic α-amylase hydrolysis
Complexities of *in vivo* starch digestion

Resistant starch entering the large intestine depends on:

- extent of salivary/pancreatic α-amylase hydrolysis
- extent and effect of chewing
- levels of enzyme secreted
- gastric residence time
- small intestinal residence time
- extent of mixing in small intestine
- other food / meal components
- etc
Complexities of *in vivo* starch digestion

Resistant starch entering the large intestine depends on:

- extent of salivary/pancreatic α-amylase hydrolysis
- extent and effect of chewing
- levels of enzyme secreted
- gastric residence time
- small intestinal residence time
- extent of mixing in small intestine
- other food / meal components
- etc

- a combination of intrinsic (starch) and extrinsic (animal) factors i.e. RS contents can depend on both the food and the eater
- analogous factors likely to be important for protein
Complexities of *in vivo* starch digestion

Resistant starch entering the large intestine depends on:

- extent of salivary/pancreatic α-amylase hydrolysis
- extent and effect of chewing
- levels of enzyme secreted
- gastric residence time
- small intestinal residence time
- extent of mixing in small intestine
- other food / meal components
- etc

- a combination of intrinsic (starch) and extrinsic (animal) factors i.e. RS contents can depend on both the food and the eater
- analogous factors likely to be important for protein
- with enough enzyme and time, all starch and dietary protein can be digested – it’s all about kinetics
What gets to the large intestine?

- The sum of all diet components and secreta that have not been absorbed in the stomach or small intestine
- All non-starch polysaccharides and oligosaccharides
- Some protein (dietary and secreted)
- Some starch (= resistant starch)
- Lipid?
- Water / minerals

- Amount of starch / protein / lipid that reaches large intestine depends not only on food structure but also individual passage rate, digestive enzyme levels etc
What gets to the large intestine?

- The sum of all diet components and secreta that have not been absorbed in the stomach or small intestine
- All non-starch polysaccharides and oligosaccharides
- Some protein (dietary and secreted)
- Some starch (= resistant starch)
- Lipid?
- Water / minerals

- Amount of starch / protein / lipid that reaches large intestine depends not only on food structure but also individual passage rate, digestive enzyme levels etc
- Food structure (and chewing) has major role – digesta composition at end of SI cannot be predicted accurately from food compositional analysis
What gets to the large intestine?

- The sum of all diet components and secreta that have not been absorbed in the stomach or small intestine
- All non-starch polysaccharides and oligosaccharides
- Some protein (dietary and secreted)
- Some starch (= resistant starch)
- Lipid?
- Water / minerals
- ‘Co-passengers’
 1. micro- and macro-nutrients trapped in e.g. plant cells
 2. micronutrients bound to food components e.g. plant cell walls
Co-passengers – type 1

- Encapsulation delivers micro/macronutrients to the colon
 - plant tissue foods - vegetables, fruits, cereals, nuts
 - food gels / capsules / structured emulsions
Co-passengers – type 1

- Encapsulation delivers micro/macronutrients to the colon
 - plant tissue foods - vegetables, fruits, cereals, nuts
 - food gels / capsules / structured emulsions

Cooked carrot puree

Co-pассengers – type 1

- Encapsulation delivers micro/macronutrients to the colon
 - plant tissue foods - vegetables, fruits, cereals, nuts
 - food gels / capsules / structured emulsions

Cooked carrot puree before and after gastric and small intestinal digestion

Co-passengers – type 1

- Encapsulation delivers micro/macronutrients to the colon
 - plant tissue foods - vegetables, fruits, cereals, nuts
 - food gels / capsules / structured emulsions

Almond nut tissue fragments recovered from faeces of human volunteers showing oil bodies trapped inside cellular structure

Ellis et al Am J Clin Nutr, 2004; 80, 604-613
Co-passengers – type 2

Anthocyanins in purple carrot puree

1. <5% of bound anthocyanins are released during digestion
2. ~65% of purple carrot puree anthocyanins predicted to be delivered to the colon

Padayachee et al, Food and Function, 4, 906-916 (2013)
Phenolic acids in purple carrot puree (mostly chlorogenic)

Co-passengers – type 2

1. <5% of bound phenolic acids are released during digestion
2. ~ 65% of purple carrot puree phenolic acids are predicted to be delivered to the colon

Padayachee et al, Food and Function, 4, 906-916 (2013)
What happens in the colon?

Residual digesta and secreta available for fermentation by microbiota. Factors important for nutrition and health:

- Rate (related to site) of fermentation
- End-products
- Microbiota amounts and population shifts
What happens in the colon?

Residual digesta and secreta available for fermentation by microbiota.

Factors important for nutrition and health:

- Rate (related to site) of fermentation
- End-products
- Microbiota amounts and population shifts

Some key questions:

- Who does what with whom and where?
- Effects of single polysaccharides vs cell wall composites
- Particle size effects for grains and vegetables
- [Consequences of bound micronutrients]
Cellulosic material from the caecal digesta of a pig, stained with Pontamine Red, is colonised by large amounts of bacteria (labelled green with a broad spectrum 16S rRNA probe), with Eubacterium rectale species (labelled yellow) particularly prevalent at the surface of cellulosic particles. (courtesy of Mr John Gorham)

Gidley, Current Opinion in Colloid and Interface Science, 2013, 18, 371-378

Very limited current information on which bacterial species / classes do what with whom and where in the large intestine
Fermentation and microstructure

Rate of fermentation influences site of fermentation
- particularly important to ensure fermentation persists to the distal colon as this is the site of many cancers
Fermentation and microstructure

Rate of fermentation influences site of fermentation
- particularly important to ensure fermentation persists to the distal colon as this is the site of many cancers

Fibre polysaccharides associated with cellulose in plant cell walls. How does this affect the rate and end-products of fermentation?
Fermentation and microstructure

Rate of fermentation influences site of fermentation
- particularly important to ensure fermentation persists to the distal colon as this is the site of many cancers

Fibre polysaccharides associated with cellulose in plant cell walls. How does this affect the rate and end-products of fermentation?
- Compare fermentation of dissolved polysaccharides with bacterial cellulose composites
 - defined chemistry and microstructure

- Use *in vitro* fermentation with faecal inocula from pigs adapted to a low fibre diet
 - defined inocula leading to reproducible fermentations

Micro-architecture of model composites

- BC
- BC-AX (no cross-linking)
- BC-XG (cross-linking)
- BC-MLG (no cross-linking)

- Bacterial cell
- Cellulose fibrils
- AX
- MLG
- XG
Fermentation of bacterial cellulose vs cotton & wheat bran substrates
Comparison of gas profiles from dissolved polysaccharides and model composites

Composites with cellulose have reduced lag compared to pure cellulose but extended fermentation compared to soluble polymers - composite profiles similar to wheat bran.
Fermentation end-products

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Acetic</th>
<th>Propionic</th>
<th>Butyric</th>
<th>Total SCFA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mmoles/g DM</td>
<td>mmoles/g DM</td>
<td>mmoles/g DM</td>
<td>mmoles/g DM</td>
</tr>
<tr>
<td>AX</td>
<td>8.55<sup>c</sup></td>
<td>4.24<sup>a</sup></td>
<td>0.14<sup>b</sup></td>
<td>14.33<sup>b,c</sup></td>
</tr>
<tr>
<td>MLG</td>
<td>8.16<sup>c</sup></td>
<td>4.14<sup>a</sup></td>
<td>0.11<sup>b</sup></td>
<td>14.23<sup>b,c</sup></td>
</tr>
<tr>
<td>XG</td>
<td>8.10<sup>c</sup></td>
<td>3.48<sup>b</sup></td>
<td>0.14<sup>b</sup></td>
<td>13.21<sup>d</sup></td>
</tr>
<tr>
<td>BC</td>
<td>10.36<sup>a</sup></td>
<td>1.56<sup>e</sup></td>
<td>0.28<sup>a</sup></td>
<td>14.30<sup>b,c</sup></td>
</tr>
<tr>
<td>AX Composite</td>
<td>9.23<sup>b</sup></td>
<td>2.11<sup>d</sup></td>
<td>0.28<sup>a</sup></td>
<td>13.82<sup>c,d</sup></td>
</tr>
<tr>
<td>MLG Composite</td>
<td>10.78<sup>a</sup></td>
<td>1.94<sup>d</sup></td>
<td>0.31<sup>a</sup></td>
<td>15.48<sup>a</sup></td>
</tr>
<tr>
<td>XG Composite</td>
<td>9.18<sup>b</sup></td>
<td>2.48<sup>c</sup></td>
<td>0.30<sup>a</sup></td>
<td>14.34<sup>b,c</sup></td>
</tr>
</tbody>
</table>

Probability:
- <0.0001
- <0.0001
- <0.0001
- <0.0001

MSD*
- 0.58
- 0.30
- 0.04
- 0.68

a,b,c... Different superscripts in the same column indicated significant differences

NSPs in model composites produce significantly increased butyric acid. Therefore, both fermentation rates and end products are altered by local microstructure effects

Effects of food structure

- Rate (= site) of fermentation depends on physical form and chemistry

- Smaller particle size of wheat bran or wheat aleurone resulted in faster fermentation (Stewart and Slavin, Br J Nutr 2009; 102, 1404-1407)

- Smaller particle size of carrots resulted in slower fermentation (Day et al, J Ag Food Chem 2012; 60, 3282-3290)

![Graph showing fermentation time vs. dry matter cumulative volume for different samples:](A)
Effects of food structure

- Rate (= site) of fermentation depends on physical form and chemistry

- Smaller particle size of wheat bran or wheat aleurone resulted in faster fermentation (Stewart and Slavin, Br J Nutr 2009; 102, 1404-1407)
- Smaller particle size of carrots resulted in slower fermentation (Day et al, J Ag Food Chem 2012; 60, 3282-3290)
Effects of food structure

- Encapsulation delivers micro/macronutrients to the colon
 - plant tissue foods - vegetables, fruits, cereals, nuts
 - food gels / capsules / structured emulsions

- Rate (= site) of fermentation depends on physical form and chemistry
 - low molecular weight carbohydrates can be fermented rapidly (cf. lactose intolerance)
 - dense and/or lignified structures may hardly be fermented at all (e.g. wheat bran)
 - larger particle size can lead to faster (e.g. carrots) or slower (e.g. cereal grain fractions) fermentation
 - some soluble polymers fermented slower than some insoluble polymers (e.g. psyllium vs cereal endosperm)

- No necessary correlation between solubility and fermentation rate / extent of dietary fibres
1. Residual digesta entering large intestine difficult to predict and likely to show large inter- and intra-individual variation, particularly protein/starch levels and micronutrient load
Nutrition and health implications

1. Residual digesta entering large intestine difficult to predict and likely to show large inter- and intra-individual variation, particularly protein/starch levels and micronutrient load.

2. Fermentation rate depends not only on composition, but also on (digesta) microstructure.
1. Residual digesta entering large intestine difficult to predict and likely to show large inter- and intra-individual variation, particularly protein/starch levels and micronutrient load.

2. Fermentation rate depends not only on composition, but also on (digesta) microstructure.

3. Challenge for regulation / labeling of foods as functionality cannot be predicted from composition (current challenge with proposed dietary fibre definitions).
1. Residual digesta entering large intestine difficult to predict and likely to show large inter- and intra-individual variation, particularly protein/starch levels and micronutrient load

2. Fermentation rate depends not only on composition, but also on (digesta) microstructure

3. Challenge for regulation / labeling of foods as functionality cannot be predicted from composition (current challenge with proposed dietary fibre definitions)

4. How quantitatively predictive can *in vitro* techniques be for whole foods/meals/diets, given intra- and inter-subject variation?
1. Residual digesta entering large intestine difficult to predict and likely to show large inter- and intra-individual variation, particularly protein/starch levels and micronutrient load.

2. Fermentation rate depends not only on composition, but also on (digesta) microstructure.

3. Challenge for regulation / labeling of foods as functionality cannot be predicted from composition (current challenge with proposed dietary fibre definitions).

4. How quantitatively predictive can *in vitro* techniques be for whole foods/meals/diets, given intra- and inter-subject variation?

5. Faecal and other biomarkers (self-measured in the future?) will become important in assessing impacts of dietary choices/changes.
Impact of Food Structure on Fermentation by Gut Microbiota

• What gets to the large intestine?

• What happens in the large intestine?

• Effects of food structure

• Nutrition and health implications
Acknowledgements

The University of Queensland
Dr Barbara Williams
Dr Deirdre Mikkelsen
Prof Wayne Bryden
Dr Dagong Zhang
Dr Anneline Padayachee (now UM)
Mr John Gorham
CNAFS/CoE colleagues

Funding
ARC CoE in Plant Cell Walls
CSIRO Flagship Collaboration Fund
ARC Discovery scheme

CSIRO
Dr Li Day
Dr David Topping
Dr Tony Bird
Dr Chris McSweeney