Dietary Protein Intake on Body Composition Changes in Healthy Aging

Jung Eun Kim, Ph.D., R.D.

Mini-Symposium: The Role of Nutrition in Healthy Aging
7th Nov, 2017

Longitudinal changes in body composition associated with aging

Sarcopenia

- The loss of muscle mass, strength and function related to aging

Impact of body composition changes on mortality risk

- 791 older adults (75 ± 9 yr, BMI: 25 ± 6 kg/m²; mean ± SD)
- Cohort study (1999 – 2011)

<table>
<thead>
<tr>
<th>Change (kg/m²/year)</th>
<th>HR</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>Reference (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>0.89</td>
<td>0.59-1.36</td>
<td>0.612</td>
</tr>
<tr>
<td>Loss</td>
<td>1.12</td>
<td>0.76-1.64</td>
<td>0.562</td>
</tr>
<tr>
<td>FMI change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>Reference (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>1.05</td>
<td>0.70-1.58</td>
<td>0.805</td>
</tr>
<tr>
<td>Loss</td>
<td>0.87</td>
<td>0.57-1.34</td>
<td>0.536</td>
</tr>
<tr>
<td>FFMI change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>Reference (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain</td>
<td>1.17</td>
<td>0.79-1.75</td>
<td>0.438</td>
</tr>
<tr>
<td>Loss</td>
<td>2.02</td>
<td>1.28-3.19</td>
<td>0.002</td>
</tr>
</tbody>
</table>

BMI: Body mass index; FMI: Fat mass index; FFMI: Fat free mass index
HR: Hazard ratio; 95% CI: 95% confidence interval

Adapted from Jackson AS et al. Br J Nutr, 2012
http://www.iofbonehealth.org/what-sarcopenia
Adapted from Mithal A et al. Osteoporos Int, 2013
How to improve/retain body composition for healthy aging?

- Insufficient Nutrition Status
- Aging
- Medical Conditions
- Sarcopenia
- Genetic Factors
- Hormonal Changes
- Higher total dietary protein intakes
- Sedentary Lifestyle

Impact of higher dietary protein intake on exercise-induced body composition changes in middle-aged and older US adults

- Purpose
To assess the impact of total protein intake on changes in body composition in overweight and obese, middle-aged adults who participated in a resistance and aerobic exercise training program

- A double-blind, placebo-controlled, community-based 36-wk intervention (n=188)
- Provided invalid 4-day food records (n=71)
- Data used for retrospective assessment (n=117)

Ages and BMI: 30 ± 3 kg/m²

Impact of total protein intake on the changes in body composition

- Total protein intake
 - < 1.0 g·kg⁻¹·d⁻¹ (n=43)
 - 1.0-1.2 g·kg⁻¹·d⁻¹ (n=29)
 - ≥ 1.2 g·kg⁻¹·d⁻¹ (n=45)

Sarcopenic obesity

- Age-related progress loss of skeletal muscle mass and strength with gain in fat mass

35 years old
BMI: 30 kg/m²

65 years old
BMI: 30 kg/m²

Mean ± SE
* indicates the mean value is significantly different from baseline at p<0.05
Different letters indicate statistical differences among the protein groups (p<0.05)

Adopted from Campbell WW et al. J Nutr, 2015

http://www.drsharma.ca/guest-post-icd-10-code-coming-for-sarcopenic-obesity

Sipilä S et al. Biogerontology, 2013
Mortality risk for sarcopenic obesity

Ahima RS, Lazar MA. Science. 2013

Effect of dietary protein on % changes of body mass as fat mass and lean mass

Tang M et al. Obesity. 2013
Leidy HJ et al. Obesity. 2007

Impact of higher dietary protein intake on body composition changes after weight loss in older adults

PICOS criteria

- **Population**
 - Adults mean age ≥ 50 y

- **Intervention**
 - Consumed energy-restricted diet with ≥ 1.0 g•kg⁻¹•d⁻¹ of dietary protein during weight loss

- **Comparison**
 - Consumed energy-restricted diet with < 1.0 g•kg⁻¹•d⁻¹ of dietary protein during weight loss

- **Outcome**
 - Changes in whole-body composition, body mass, lean mass, and fat mass

- **Setting**
 - Randomized controlled trials

- **Research Question**
 - What is the effect of higher dietary protein intake on whole-body composition changes after weight loss in older adults?

Mean protein intakes

- Higher protein intake: 1.31 g•kg⁻¹•d⁻¹ (1.01 – 1.57 g•kg⁻¹•d⁻¹)
- Normal protein intake: 0.79 g•kg⁻¹•d⁻¹ (0.58 – 0.97 g•kg⁻¹•d⁻¹)

Systematic Review and Meta-Analysis

- **Systematic Review**
 - More “objective” literature review.
 - Thorough search to find all relevant studies associated with a particular research question.

- **Meta-Analysis**
 - The use of statistical methods to combine results of different individual studies and identify patterns among study results.
 - Allows making the best use of all the information gathered in systematic review by increasing the power of the analysis.

Adopted from EBM Pyramid and EBM Page Generator, copyright 2006 Trustees of Dartmouth College and Yale University.
Impact of higher protein intake on body mass change during weight loss

Impact of higher protein intake on fat and lean mass change during weight loss

Conclusion

By Improving Age-Related Body Composition changes