Ethnic differences in glycation & HbA1c-glycemia relationship: Impacts on research, diagnostic cutoffs and treatment

Melvin Leow
Deputy Director, Clinical Nutrition Research Centre
Endocrinologist, Tan Tock Seng Hospital

4th October 2017

Does HbA1c for any given glycemic burden differ by ethnicity?

YES

More recent literature from the past decade onwards suggests inter-ethnic/racial differences in the relationship between HbA1c and glucose exist!

Stereoisomers of D-glucose

99% of glucose are α-D and β-D stereoisomers (cyclic)
1% of glucose in linear aldehyde form
When plasma glucose increases, the conc of aldehyde form increases which increases the reaction with Hb terminal valines

Hemoglobin forms in the circulation

- HbA - α2β2 (95-98%)
- HbA2 - α2δ2 (1.5-3.5%)
- HbF - α2γ2 (<2%)
Glycation vs Glycosylation

- Glycation - addition of glucose to proteins via a non-enzymatic reaction
 - Genetic polymorphisms of enzymes which often account for ethnic differences are not responsible for ethnic variations for the rate and susceptibility of glycation of HbA

- Glycosylation - an enzymatic process to link carbohydrates

RBC age-dependent glycation

- Turnover of HbA1c - dependent on RBC lifespan
- Correlates with the glucose exposure of the blood over a period of the last 90-120 days
- Dynamics - formation, decomposition & destruction of RBC
 - HbA1c weighted more towards plasma glucose in past 4 weeks, with ~ 25% of HbA1c contributed by glycemia 60-120 days prior to the measurement

 - *Diabetes Care* 1993; 16: 1313-1314
HbA1c & FPG thresholds in health & disease

- **HbA1c Cutoffs**
 - HbA1c - 4.6% to 5.6% (non-DM)
 - HbA1c >= 5.7% to 6.4% (pre-DM)
 - HbA1c >= 6.5% (DM)

- **FPG Cutoffs**
 - FPG < = 5.5 mmol/L (non-DM)
 - FPG 5.6-6.9 mmol/L (pre-DM)
 - FPG >= 7.0 mmol/L (DM)

HbA1c – Accuracy is critical!

- Accurate HbA1c measurements are crucial to decision making in both diagnosis and treatment.
- Standards (NGSP/DCCT, IFCC) exist to eliminate technical errors in HbA1c testing, yet various patient factors can confound the result by decreasing or increasing it independent of glycemic status.

HbA1c vs FPG in Chinese Individuals (N = 8391)

![Graph showing the correlation between HbA1c and FPG in Chinese individuals.]

Diagnostic HbA1c Cutoff for DM Diagnosis

- For most Chinese in China in this study, the diagnostic cutoff HbA1c for DM = 6.5% (similar to ADA for the Caucasians).

 - FPG = (HbA1c – 3.1501)/0.4691 (R2 = 0.5711)
 - Substituting HbA1c = 6.5% into this yields a FPG = 7.1 mmol/L
 - Corresponds to the 1999 ADA FPG cutoff > 7.0 mmol/L to define diabetes.
HbA1c-FPG relationship (Data from Singapore Prospective Study Program 2004-2007) (N = 3895 healthy subjects)

Diabet Med 2012; 29: 911-7

Ethnic variation in the correlation between HbA1c-FPG (N = 479 type 2 DM subjects)

But could such differences vanish if HbA1c is compared against MBG which takes into account of FPG, PPG, RPG & all inter-meal glycemia?

Distribution of HbA1c in Singapore population

Regression Equations HbA1c-MBG

- MBG (mmol/L) = \{[HbA1c x 35.6] – 77.3\}/18
 - DCCT
- MBG (mmol/L) = \{[HbA1c x 36] – 100\}/18
 - UKPDS
- HbA1c = (MBG + 2.59) /1.59
 - ADAG study
Racial Difference between HbA1c-MBG in T1DM

Blacks still had higher HbA1c after adjustment for red blood cell indices, age, and sex

J Pediatr 2016; 176: 197-6

Racial Differences in the Relationship of Glucose Concentrations and Hemoglobin A1c Levels

For any given mean glucose concentration level among patients with type 1 DM

- mean HbA1c was 0.4% points \(\geq \) in black than those of white individuals.

Importantly, no significant racial differences were present in relationship of fructosamine levels with the mean glucose concentration.

Inter-racial glycation rate appears to differ mainly at the hemoglobin molecule

Fructosamine & Glycated Albumin in White vs Black Persons

HbA1c – Magnitude of Differences

- For any given mean glucose concentration level among patients with type 1 DM
 - mean HbA1c was 0.4% points \(\geq \) in black than those of white individuals.

- Importantly, no significant racial differences were present in relationship of fructosamine levels with the mean glucose concentration.
 - Inter-racial glycation rate appears to differ mainly at the hemoglobin molecule.
Limitations & Implications

- **Limitation:** number with HbA1c <6.5% few
 - Difficult to extrapolate results to normal & pre-DM

 - revealed a similar racial difference in HbA1c even for people without DM - mean HbA1c was 0.26 percentage points higher in black compared to white people

- This implies the present use of the HbA1c cutoff of 6.5% as a diagnostic criterion for diabetes as presently endorsed by the ADA >> lead to substantively higher prevalence estimates of DM from over-diagnosis especially when applied to the black population.

Racial Differences in the Relationship of Glucose Concentrations and Hemoglobin A1c Levels

- All current evidence on the clinical benefits of glycemic control is based on HbA1c
 - Therefore, HbA1c goals should remain the same in Blacks as in Whites. However, be aware that the risk of hypoglycemia is higher in Blacks for achieving the same HbA1c levels

- This gave rise a question how racial difference affects on glycation of hemoglobin because the process goes non-enzymatically
 - Inherited hemoglobin variants or hemoglobinopathies & thalassemias mostly excluded in this study

Mechanisms for ‘Glycation Gap’ Differences

- Kinetics of glycation of albumin in the circulation are similar

- Assuming no biological/structural variation in the hemoglobin macromolecule between racial groups

- Any detectable racial difference in glycation gap (defined as the difference between the measured HbA1c and that which is predicted from glycated serum albumin/fructosamine) under the same conditions could be mechanistically explained by these factors:

Mechanistic Explanations

- Heterogeneity in glucose concentration gradient across the red cell membranes

- Rates of glucose transport via GLUT1 into the erythrocytes

- Racial variances in enzymatic activity of the fructosamine 3-kinase gene which influences protein deglycation and HbA1c levels
Diagnosis of DM using HbA1c locally?

- At present, diagnosis of DM is mainly via:
 - Fasting plasma glucose
 - 75g OGTT
 - HbA1c

- Use of HbA1c instead of FPG leads to a higher prevalence of pre-DM and DM
 - *Int J Diabetol Vasc Dis Res 2015; Suppl 2. pii001*

- Use of HbA1c >6.5% performs reasonably well among 3 Asians ethnic groups in Singapore despite some interethnic variations
 - Population based cross-sectional studies n=13170
 - *J Clin Endocrinol Metab 2015; 100:689-96*

Implications for Treatment

- Population-specific cut-off points have NOT been established
 - Since optimum cut-offs vary by ethnic group

- Treatment wise – HbA1c is still applied without ethnic consideration in terms of treatment targets

- As HbA1c diverges with higher MBG, ethnic differences likely more important among poorly controlled DM

- Important to consider risk of hypoglycemia in Malays and Indians when aiming at HbA1c < 6.5-7.0% as FPG & MBG are lower than Chinese for any given HbA1c level

Thank you for your kind attention!