Nanotechnologies in Food/Packaging

- What is Nanotechnology?
- Applications for food and food packaging;
- Current status and future prospects;
- Benefits and potential risks;
- Safety and regulatory aspects
Nanotechnology

A broad set of processes, materials, and applications that span physical, chemical, biological and electronic sciences and engineering fields that involve manipulation of materials in the nano-scale (1 and 100 nm).

\[1 \text{ nm} = 1 \text{ billionth of a meter} \]

- 1/5,000,000 the size of an ant
- 1/80,000 of the diameter of a human hair
- 1/90 the size of HIV virus

Nanoparticles of various shapes and forms
- Uniform/irregular shaped
- Dispersed particles/agglomerates
- Free/bound form

Nano-Scale - Where Less may be More

- Properties and behaviour of materials can change at the nano-scale;
- Extremely small size = very large surface area = increased reactivity per equivalent weight
- Nano-sizing may also generate new properties/functionalities.

Novel material properties = New products/applications

Sector Applications

- Cosmetics and personal care products [60%]
- Paints & coatings [10%]
- Catalysts & lubricants [10%]
- Security printing
- Textiles & sports
- Medical & healthcare
- Food and nutritional supplements
- Food packaging
- Agrochemicals
- Veterinary medicines
- Water treatment
- Construction materials
- Electrical & electronics
- Fuel cells & batteries
- Paper manufacturing
- Weapons & explosives

Over 1300 consumer products already available*

*Source: www.nanotechproject.org/inventories/consumer/

Agri-Food Applications

- Efficient food production (less use of agrochemicals)
- Nutrients and Functional foods (improved uptake and bioavailability)
- New tastes, flavours (less salt, fat, sugar, etc)
- Fresh, ‘natural’, wholesome foods (less colours, flavours, preservatives)
- Lightweight, strong, functional packaging (less cost of transportation, safety of foods in the supply chain)
- Hygienic food processing and packaging (Less food-borne diseases)
- ‘Smart’ & ‘Intelligent’ packaging (food safety, authenticity, traceability)
Example Applications

- **Inorganic materials:**
 e.g. calcium, magnesium, selenium, iron, zinc, silver, gold, platinum

- **Organic ‘soft’ materials:**
 nutraceuticals, vitamins, antioxidants, preservatives, etc.

- **Agrochemicals**
 biocides, pesticides, veterinary medicines

- **Food packaging**
 improved, active, intelligent packaging

Market Status

- Increasing applications for agri-food and packaging worldwide;

- Global market for nanofood applications estimated at US$4 million in 2006, and predicted at between US$ 6-20 billion by 2010-2012 - almost half of which relates to packaging applications;

- The most promising areas predicted for the near-future are ‘Active’ and ‘Smart’ packaging, health-foods and functional foods.

Example Applications

- **Improved mechanical properties:**
 - Improvements in flexibility, temperature/moisture stability; durability, flame resistance; flame resistance;

- **Enhanced barrier properties against gases, moisture:**
 - Nano-clay composites with PA, nylons, polyolefins, PS, EVA copolymer, epoxy resins, polyurethane, PET.

- ‘Active’ nano-composites:
 - Polymer composite with antimicrobial nanomaterials, e.g. silver, zinc oxide, magnesium oxide.
 - Claimed to preserve foodstuffs longer by inhibiting microbial growth at the food contact surface.

Example Applications

- **Nano-coatings**
 - Gas-barrier coatings – e.g. silica;

 - Hydrophobic coatings for self-cleaning surfaces for hard-to-reach parts of machinery, conveyer belts, etc.

 - Antimicrobial coatings for hygienic surfaces - e.g. silver, titanium dioxide, zinc oxide.
Smart/ Intelligent Packaging Concepts

- Nanoparticle based intelligent inks or reactive nanolayers provide analyte recognition at nanoscale;
- Printed labels that can indicate:
 - temperature
 - Time
 - Pathogen
 - Freshness
 - Humidity
 - Integrity

Nano Barcodes

- commercially available Nanobarcodes® particles by Nanoplex [<www.nanoplextech.com>]
- encodeable, machine-readable, durable, sub-micron sized taggants
- manufactured by electroplating inert metals- such as gold, nickel, platinum, or silver- into templates that define the particle diameter, and then releasing the resulting striped nano-rods from the templates

Nano-sized substances - Safety Considerations

- Nanoparticles may cross membrane barriers, and reach new targets in the body;
- Nanoparticles may interact with biological entities close to the molecular level;
- Main safety concerns relate to internal exposure of insoluble/biopersistent nanomaterials;
- Substances formulated at nano-scale that are degradable should not raise special safety concerns;

Nano-sized substances in food contact materials

- What migrates out of packaging?
- Can it affect consumer safety?
- Will there be any environmental implications?
- Will consumers accept nanotech packaging?
Potential Migration of Nanoparticles

Two nanotech FCMs tested:

- **Bottles containing nanoclay composite embedded between PET layers**
 No detectable migration of nanoclay from PET.

- **Food containers made of polypropylene-nanosilver composite**
 Very low level of silver migration (less than the limit of quantification).

- In either case, the presence of nanoparticles did not affect migration of non-nano components.

- Similar lack of migration of TiN reported in PET containers (EFSA Opinion).

- Some reassurance in the safety of nanotech FCMs based on data from these limited tests – more needed.

Knowledge Gaps

- **where low or no migration of nanoparticles into food:**
 - Surface biocidal effects and resulting safety of packaged foodstuffs may only be marginal.
 - How long the antimicrobial effects be maintained - especially in reusable FCMs?

- **where nanoparticles are released into food:**
 - they will be considered food additives;
 - will require risk assessment of the long-term exposure to biocidal nanoparticles via food.

Migration of Nanoparticles from Food Packaging

Little or no migration from polymers, except for very small nanoparticles (lower range of the nano-scale) that are not bound in a relatively low dynamic viscosity polymer matrix.
Regulation of Nanomaterials in Food/Feed in Europe

Novel Foods [Council Regulation (EC) N° 258/97]
- implicitly covers nanomaterials. The new legislation adopted in November 2015 will require a Novel Food authorisation for nanomaterials before use in foodstuffs, and safety assessed by the European Food Safety Authority;

Food Additives [Regulation 1333/2008] - A new risk assessment is required for:
 - new additives and for already authorised additives when there is a "significant change in the production methods or in the starting materials used, or if there is a change in particle size, for example through nanotechnology";
 - where flavourings and enzymes are obtained from new production processes giving rise to significant changes in the production process.

Food Packaging
[Regulation (EU) N°10/2011 on measures for plastic materials and articles]:
- As from 1 May 2011, nanomaterials can only be used if listed in its Annex I.
- Article 9(2): "Substances in nanof orm shall only be used if explicitly authorised and mentioned in the specifications in Annex I".
[Regulation (EC) N°450/2009 for active and intelligent materials and articles]:
- Article 6: "substances deliberately engineered to particle size which exhibit functional physical and chemical properties that significantly differ from those at a larger scale".

Food Information Regulation [(EU) No 1169/2011]

Summary

- Early days for nano-food/packaging applications: Packaging applications have been projected as the main growth area for the near future;
- Potential benefits: Improved food hygiene, extended shelf life, better traceability and safety of packaged food products;
- Safety and regulatory challenges: The use of nanomaterials in food contact materials will need safety assessment and authorisation in Europe.
 - More research is needed on certain aspects relating to the potential effects of insoluble, biopersistent nanoparticles.

More Information

Applications and implications of nanotechnologies for the food sector

Qasim Chaudhry1, Michael Scottier1, James Blackburn, Bryony Ross1, Alistair Donall1, Laurence Castle2, Robert Aitken1, & Richard Watkins1
1Defra Central Science Laboratory, Sand Hutton, York YO41 1LU, UK; 2Institute of Occupational Medicine, Research Park South, Riccarton, Edinburgh EH14 4DD, UK, and 3Environmental Chemistry Department, University of York, Heslington, York YO10 5DD, UK

Received 8 August 2007; accepted 14 December 2007

Abstract

A review of current and projected nanotechnology-derived food ingredients, food additives and food contact materials is presented in relation to potential implications for consumer safety and regulatory controls. Nanotechnology applications are expected to bring a range of benefits to the sector; including new textures, tastes and sensations, less use of fats, enhanced absorption of nutrients, improved packaging, recyclability and security of food products. The review has shown that nanotechnology-derived food and health food products are set to grow worldwide and, moreover, a variety of food ingredients, additives, carriers for nutrients/supplements and food contact materials is already available in some countries.

More Information