Diet, Gut Microbiome, and Bone Health

Connie M. Weaver
Department of Nutrition Science
Purdue University
weavercm@purdue.edu

Osteoporosis Prevention

Calcium accretion rates are highest during adolescence\(^1\) 10%↑ in peak bone mass delays osteoporosis by 13 yr.

Calcium intakes remain inadequate especially in girls (9-18 y; mean 918 – 988 mg/d)\(^2\).

Disclosures for Connie Weaver

<table>
<thead>
<tr>
<th>AFFILIATION/FINANCIAL INTERESTS (past 12 months)</th>
<th>CORPORATE ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grants/Research Support:</td>
<td>NIH, Tate & Lyle, APRE</td>
</tr>
<tr>
<td>Scientific Advisory Board/Consultant:</td>
<td>ILSI, Showalter, Pharmavite</td>
</tr>
<tr>
<td>Speakers Bureau:</td>
<td></td>
</tr>
<tr>
<td>Stock Shareholder:</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Effect of Increasing Dietary Calcium

- **↑ absorption**
- **↓ Bone resorption**

What are Prebiotics?

Basic criteria for selection of prebiotics

- Resistance to digestion
- Hydrolysis and fermentation by colonic microbiota
- Selective stimulation or growth of one or limited number of bacteria
- Beneficial health effects to the host

Greater Intestinal Surface Area

- Crypt depth ↑
- Epithelial cell density ↑
- Cecal vein flow ↑

Net calcium transport 2-fold higher in cecum and distal colon*

Enhanced Mineral Solubility

SCF and SCFA + pH

Blood

SCFA

Greater Intestinal Surface Area

Human studies showing ↑ Ca absorption with inulin-type fructans

- Van den Heuvel et al., 1999
- Griffin et al., 2002, 2003
- Coudray et al., 1997
- Abrams et al., 2005

1-Year Fructan Intervention Trial in 100 boys and girls aged 9-12 y

Objective: Assess the long-term effects of inulin-type fructans on calcium absorption and bone mineral accretion

- 8 g/d mixed short and long inulin-type fructans
- 8 weeks-Ca absorption
- 1 year-Ca absorption and BMD

8 g/d maltodextrin control
- 8 weeks-Ca absorption
- 1 year-Ca absorption and BMD

100 pubertal boys and girls age 9-13

None of these studies evaluated changes in gut microbiota.

Calcium Absorption Increased with Fructan Supplementation

Pubertal adolescents assigned to 8 g/d of mixed short and long chain inulin-type fructans

Whole Body BMD Increased with Fructan Supplementation

* difference from control at 1 yr, p=0.01

* difference from control at 8 wk, p<0.001
** difference from control at 1 yr, p=0.04
Scientific question

- Can diet (prebiotic fibers) alter the gut microbiome to improve calcium absorption and utilization?

Types Prebiotics

- **Disaccharides**
 - Lactulose
 - Lactitol

- **Oligosaccharides**
 - Short Chain Fructo-oligosaccharides (scFOS)
 - Soybean oligosaccharides
 - Xylo-oligosaccharides
 - Galacto-oligosaccharides (GOS)

- **Polysaccharides**
 - Inulin (long chain FOS)
 - Resistant starches

Galactooligosaccharide

- Commercially prepared with β-D-galactosidase
 - Linkages are β(1-4), β(1-2), β(1-6)
 - Similar to human milk oligosaccharides (HMOs)

GOS Improved Mineral Utilization in Rats\(^1\)

- 4-week old male Sprague-Dawley Rats, n=75 (15/group)
- 8 week treatment period
- GOS treatments replaced cornstarch by % weight
- Primary Outcomes
 - Mineral Balance (Ca, Mg)
 - Bone mineral density
- Mechanistic Outcomes
 - Cecal Morphology
 - Microbial Community Structure

\(^1\)Weaver et al. J Agric Food Chem 2011; 59: 6501
Mechanistic Outcomes Predicted Calcium Absorption and BMD in Rats

- Cecal pH*: (2.2 to 11.0 % change)
- Cecal Wall Weight*: (13.3 to 141.0 % change)
- Cecal Content Weight*: (45.0 to 342.6 % change)
- Bifidobacteria†: (-25.4 to +265.9 % change)
- Calcium Absorption*: (15.7 – 53.2 % change)
- Distal femur vBMD‡: (4.4 – 7.2 % change)

* p<0.01, † p<0.05, ‡ p<0.0001

GOS

The effects of galactooligosaccharide (GOS) on colonic calcium absorption in pre-menarcheal girls

STUDY DESIGN

Randomized, double-blind crossover design
Healthy, premenarcheal girls, age 9-12 (n=29)
GOS supplemented in two yogurt smoothies/day

- 0g GOS
- 5g GOS
- 10g GOS

- 2% GOS in rat diet = 8g GOS/d in humans (levels proportional to body surface area)

3 week consumption of GOS separated by 2-week washouts
2 day clinical visit at end of each 3-week treatment

GOS Improved Calcium Absorption

p=0.0149
Summary of GOS Effects in Girls

- GOS treatment had a differential response on levels of bifidobacteria
- 5 and 10 g/d GOS supplementation increased calcium absorption by 10% relative to control
 - Increase in absorption would account for 5.4% of total skeletal calcium after a year
- Increased absorption occurs between 24-36h post-treatment, suggesting lower gut mechanisms
- GOS may help reduce fracture risk by maximizing bone mass accrual during growth

Observation on Mechanisms

- All fibers except resistant starches led to increased total SCFA, acetate, butyrate
- But total SCFA largely unrelated to bone parameters
- Cecal content weight better predictor of bone mineral density and strength

Weaver CM et al. JAgri Food Chem. 2010.
TWO RANDOMIZED, DOUBLE BLIND, CROSSOVER SCF STUDIES WITH TEENS

Study 1: Efficacy

- Subject Randomization
- N = 28 (G)
- 0, 10, or 20 g/d of fiber as SCF
- 3 week intervention
- 1 week washout
- 3 week intervention

Study 2: Effectiveness

- Subject Randomization
- N = 24 (B/G)
- 0, 10, or 20 g/d of fiber as SCF
- 4 week intervention
- 3 week washout
- 4 week intervention

Period-End Clinical Visit: Dual Tracer Calcium Absorption

Teen Study 1 Efficacy Study

- Adolescent girls (n=9; 12-14 y) and boys (n=15; 13-15 y)
- Controlled diets with 600 mg/d calcium and 15 g/d fiber (not including SCF)
- PROMITOR® SCF in fruit snacks

Primary objective:

- Determine the effect of SCF on calcium absorption and retention in adolescent boys and girls

Secondary objective:

- Assess the effect of SCF on fecal microbiota in relation to calcium absorption

SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%

<table>
<thead>
<tr>
<th>SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%</th>
<th>SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%</th>
<th>SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%</th>
<th>SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%</td>
<td>SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%</td>
<td>SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%</td>
<td>SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%</td>
</tr>
<tr>
<td>SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%</td>
<td>SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%</td>
<td>SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%</td>
<td>SCF INCREASES CALCIUM ABSORPTION IN THE LOWER GUT BY 12%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Soluble Corn Fiber’s Effect on Bone Health in Postmenopausal women

Hypothesis: SCF will increase bone calcium retention in a dose-dependent manner in postmenopausal women.

Bone turns over at a rate of 26%/year for trabecular bone and 3%/year for cortical bone.

FDA approved approach to study interventions:
- 4 year RCT of BMD
- We developed a 50 day screening method.

Traditional DXA measures are time consuming in humans

Study design

- Measures atom level quantities 14C, 41Ca, 129I, 26Al, 10Be
- 41Ca hat $t_{1/2}$ ~ 100,000 years
- 99% of Ca in the body resides in the skeleton
- 24-hr Urine collection every ~10 days
- 41Ca/Ca in urine
- Baseline, Treatment 1, Recovery 1

Purdue University Cooperative Extension Service is an equal access/equal opportunity institution.

Rapid Screening Method Accelerator Mass Spectrometry for Tracer Quantification
Effect of Added Soluble Corn Fiber on Net Bone Calcium Retention in Postmenopausal Women (Mean ± 95% CI)

- Different from predicted values determined at baseline and recovery periods

Symptom Severity by Dose (Mean ± SEM)

No significant difference in severity of GI distress between SCF intake levels

BIOMARKERS OF BONE TURNOVER

- BAP – Bone-Specific Alkaline Phosphatase (Bone Formation)
- NTx – N-Terminal Telopeptide (Bone Resorption)
- OC – Osteocalcin (Bone Turnover)
Dietary prebiotic results in significant differences in Microbiome of subjects

Effectiveness Study

All Female White Subjects

SCF treatments

- B-0 g control
- B-10 g
- B-20 g
- E-0 g control
- E-10 g
- E-20 g

B=Beginning E=End

Principal Coordinate Analysis (PCoA) of Euclidean Distances

SCF treatment

- B-0 g control
- B-10 g
- B-20 g
- E-0 g control
- E-10 g
- E-20 g

Effectiveness Study

All Female White Subjects

Whisner CM et al. (submitted)

Dietary prebiotic results in significant differences in Microbiome of subjects.

SCF increased bone calcium retention in a dose response manner in postmenopausal women.

Thank you!

- **Funders:**
 - FrieslandCampina
 - Tate & Lyle
 - NICHD

- **Collaborators/Lab:**
 - Cindy Nakatsu
 - George McCabe
 - Munro Peacock
 - Meryl Wastney
 - Linda McCabe
 - Berdine Martin
 - Corrie Whisner
 - Pam Lachcik
 - Steven Jakeman